DNA Sequencing

Since the completion of the Human Genome Project, technological improvements and automation have increased speed and lowered costs to the point where individual genes can be sequenced routinely, and some labs can sequence well over 100,000 billion bases per year, and an entire genome can be sequenced for just a few thousand dollars.

Many of these new technologies were developed with support from the National Human Genome Research Institute (NHGRI) Genome Technology Program and its Advanced DNA Sequencing Technology awards. One of NHGRI’s goals is to promote new technologies that could eventually reduce the cost of sequencing a human genome of even higher quality than is possible today and for less than $1,000.

Researchers now are able to compare large stretches of DNA – 1 million bases or more – from different individuals quickly and cheaply. Such comparisons can yield an enormous amount of information about the role of inheritance in susceptibility to disease and in response to environmental influences. In addition, the ability to sequence the genome more rapidly and cost-effectively creates vast potential for diagnostics and therapies.

Although routine DNA sequencing in the doctor’s office is still many years away, some large medical centers have begun to use sequencing to detect and treat some diseases. In cancer, for example, physicians are increasingly able to use sequence data to identify the particular type of cancer a patient has. This enables the physician to make better choices for treatments.

Researchers in the NHGRI-supported Undiagnosed Diseases Program use DNA sequencing to try to identify the genetic causes of rare diseases. Other researchers are studying its use in screening newborns for disease and disease risk.

Moreover, The Cancer Genome Atlas project, which is supported by NHGRI and the National Cancer Institute, is using DNA sequencing to unravel the genomic details of some 30 cancer types.  Another National Institutes of Health program examines how gene activity is controlled in different tissues and the role of gene regulation in disease. Ongoing and planned large-scale projects use DNA sequencing to examine the development of common and complex diseases, such as heart disease and diabetes, and in inherited diseases that cause physical malformations, developmental delay and metabolic diseases.

(Resource: National Human Genome Research Institute)

Leave a Reply

Your email address will not be published. Required fields are marked *