Tiny Hard Drive Uses Single Atoms to Store Data

The proof-of-concept device can pack hundreds of times as much data per square inch than the most advanced, commercially available data-storage technologies today.

By manipulating the interactions between individual atoms, scientists report they have created a device that can pack hundreds of times more information per square inch than the best currently available data-storage technologies.

The working prototype is part of a decades-long attempt to shrink electronics down to the atomic level, a feat scientists believe would allow them to store information much more efficiently, in less space and more cheaply. By comparison, tech companies today build warehouse-sized data centers to store the billions of photos, videos and posts consumers upload to the internet daily. Corporations including International Business Machines Corp. and Hewlett Packard Enterprise Co. also have explored research to reduce such space needs.

The so-called atomic-scale memory, described in a paper published on Monday in the scientific journal Nature Nanotechnology, can hold one kilobyte, the equivalent of roughly a paragraph of text.

It may not sound “very impressive,” said Franz Himpsel, a professor emeritus of physics at the University of Wisconsin, Madison, who wasn’t involved in the study. But “I would call it a breakthrough.”

Most previous attempts at encoding information with atoms, including his own, managed roughly one byte, Dr. Himpsel said. And data could be stored only once. To store new information, the “disk” had to be re-formatted, like CD-Rs popular in the ’90s.

With the new device, “we can rewrite it as often as we like,” said Sander Otte, an experimental physicist at Delft University of Technology in the Netherlands and the lead author on the new paper.

The researchers first stored a portion of Charles Darwin’s “On the Origin of Species” on the device. They then replaced that with 160 words from a 1959 lecture by physicist Richard Feynman in which he imagined a world powered by devices running on atomic-scale memory.

To build their prototype, the scientists peppered a flat copper bed with about 60,000 chlorine atoms scattered at random, purposely leaving roughly 8,000 empty spaces among them. A mapping algorithm guided the tiny, copper-coated tip of a high-tech microscope to gently pull each chlorine atom to a predetermined location, creating a precise arrangement of atoms and neighboring “holes.”

The team also crafted a language for their device. The stored information is encoded in the patterns of holes between atoms. The atom-tugging needle reads them as ones and zeros, turning them into regular binary code.

The researchers marked up the grid with instructions that cued the software where it should direct the needle to write and read data. For instance, a three-hole diagonal line marked the end of a file.

“That’s what I really love in this work,” said Elke Scheer, a nanoscientist at the University of Konstanz in Germany not involved with the study. “It’s not just physics. It’s also informatics.”

Writing the initial data to the device took about a week, though the rewriting process takes just a few hours, Dr. Otte said.

“It’s automated, so it’s 10 times faster than previous examples,” said Christopher Lutz, a staff scientist at IBM Research-Almaden in San Jose, Calif. Still, “this is very exploratory. It’s important not to see this one-kilobyte memory result as something that can be taken directly to a product.”

Reading the stored data is much too slow to have practical applications soon. Plus, the device is stable for only a few hours at extremely low temperatures. To be competitive with today’s hard drives, the memory would have to persist for years and work in warmer temperatures, said Victor Zhirnov, chief scientist at the Semiconductor Research Corp., a research consortium based in Durham, N.C.

When Dr. Otte’s team took the memory out of the extremely low-temperature environment in which it was built and stored, the information it held was lost. Next, his team will explore other metal surfaces as well as elements similar to, but heavier than, chlorine, to see if that improves the device’s stability.

“There’s many combinations to play with,” he said.

(Written by Daniela Hernandez, Wall Street Journal. Further readings: Nature Nanotechnology.)

New catalyst is three times better at splitting water

Summary: With a combination of theory and clever, meticulous gel-making, scientists have developed a new type of catalyst that’s three times better than the previous record-holder at splitting water into hydrogen and oxygen — the vital first step in making fuels from renewable solar and wind power.

One way to store intermittent sun and wind energy is to use it to split water into oxygen and hydrogen, and then use the hydrogen as fuel. Now scientists at SLAC and the University of Toronto have invented a new type of catalyst that makes this process three times more efficient. In this water-splitting device on the Toronto campus, hydrogen is bubbling up from the left electrode and oxygen is bubbling up from the right one.

With a combination of theory and clever, meticulous gel-making, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and the University of Toronto have developed a new type of catalyst that’s three times better than the previous record-holder at splitting water into hydrogen and oxygen — the vital first step in making fuels from renewable solar and wind power.

The research, published today in the journal Science, outlines a potential way to make a future generation of water-splitting catalysts from three abundant metals — iron, cobalt and tungsten — rather than the rare, costly metals that many of today’s catalysts rely on.

“The good things about this catalyst are that it’s easy to make, its production can be very easily scaled up without any super-advanced tools, it’s consistent, and it’s very robust,” said Aleksandra Vojvodic, a SLAC staff scientist with the SUNCAT Center for Interface Science and Catalysis who led the theoretical side of the work.

Storing Sun and Wind Power

Scientists have been searching for an efficient way to store electricity generated by solar and wind power so it can be used any time — not just when the sun shines and breezes blow. One way to do that is to use the electrical current to split water molecules into hydrogen and oxygen, and store the hydrogen to use later as fuel.

This reaction takes place in several steps, each requiring a catalyst — a substance that promotes chemical reactions without being consumed itself — to move it briskly along. In this case the scientists focused on a step where oxygen atoms pair up to form a gas that bubbles away, which has been a bottleneck in the process.

In previous work, Vojvodic and her SUNCAT colleagues had used theory and computation to look at water-splitting oxide catalysts that contain one or two metals and predict ways to make them more active. For this study, Edward H. Sargent, a professor of electrical and computer engineering at the University of Toronto, asked them to look at the effect of adding tungsten — a heavy, dense metal used in light bulb filaments and radiation shielding — to an iron-cobalt catalyst that worked, but not very efficiently.

With the aid of powerful computers at SLAC and elsewhere and state-of-the-art computational tools, the SUNCAT team determined that adding tungsten should dramatically increase the catalyst’s activity — especially if the three metals could be mixed so thoroughly that their atoms were uniformly distributed near the active site of the catalyst, where the reaction takes place, rather than separating into individual clusters as they normally tend to do.

“Tungsten is quite a large atom compared to the other two, and when you add a little bit of it, it expands the atomic lattice, and this affects the reaction not only geometrically but also electronically,” Vojvodic said. “We were able to understand, on the atomic scale, why it works, and then that was verified experimentally.”

Add Metal Atoms, Mix and Gel

Based on that information, Sargent’s team developed a novel way to distribute the three metals uniformly within the catalyst: They dissolved the metals and other ingredients in a solution and then slowly turned the solution into a gel at room temperature, tweaking the process so the metal atoms did not clump together. The gel was then dried into a white powder whose particles were riddled with tiny pores, increasing the surface area where chemicals can attach and react with each other.

In tests, the catalyst was able to generate oxygen gas three times faster, per unit weight, than the previous record-holder, Sargent said, and it also proved to be stable through hundreds of reaction cycles.

“It’s a big advance, although there’s still more room to improve,” he said. “”And we will need to make catalysts and electrolysis systems even more efficient, cost effective and high intensity in their operation in order to drive down the cost of producing renewable hydrogen fuels to an even more competitive level.”

Sargent said the researchers hope to use the same method to develop other three-metal catalysts for splitting water and also for splitting carbon dioxide, a greenhouse gas released by burning fossil fuels, to make renewable fuels and chemical feed stocks. He and five other members of the University of Toronto team have filed for a provisional patent on the technique for preparing the catalyst.

Future Directions

“There are a lot of things we further need to understand,” Vojvodic said. “Are there other abundant metals we can test as mixtures in oxides? What are the optimal mixtures of the components? How stable is the catalyst, and how can we scale up its production? It needs to be tested at the device level, really.”

Jeffrey C. Grossman, a professor of materials science and engineering at MIT who was not involved in the study, said, “The work impressively highlights the power of tightly coupled computational materials science with advanced experimental techniques, and sets a high bar for such a combined approach. It opens new avenues to speed progress in efficient materials for energy conversion and storage.”

(Source: SLAC National Accelerator Laboratory)

Carbon leads the way in clean energy: New method uses cheap carbon-based catalyst to deliver energy using hydrogen

Summary: Groundbreaking research is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

Drop of water. “Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao.

Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

Professor Xiangdong Yao and his team from Griffith’s Queensland Micro- and Nanotechnology Centre have successfully managed to use the element to produce hydrogen from water as a replacement for the much more costly platinum.

“Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao.

“Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains a great challenge.

“Platinum is the most active and stable electrocatalyst for this purpose, however its low abundance and consequent high cost severely limits its large-scale commercial applications.

“We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.

“In our research, we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution.

“This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance and impressive durability.”

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Professor Yao says that this work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

(Source: Griffith University)

Solar cells as light as a soap bubble

The MIT team has achieved the thinnest and lightest complete solar cells ever made, they say.

Imagine solar cells so thin, flexible, and lightweight that they could be placed on almost any material or surface, including your hat, shirt, or smartphone, or even on a sheet of paper or a helium balloon.

Researchers at MIT have now demonstrated just such a technology: the thinnest, lightest solar cells ever produced. Though it may take years to develop into a commercial product, the laboratory proof-of-concept shows a new approach to making solar cells that could help power the next generation of portable electronic devices.

The new process is described in a paper by MIT professor Vladimir Bulović, research scientist Annie Wang, and doctoral student Joel Jean, in the journal Organic Electronics.

Bulović, MIT’s associate dean for innovation and the Fariborz Maseeh (1990) Professor of Emerging Technology, says the key to the new approach is to make the solar cell, the substrate that supports it, and a protective overcoating to shield it from the environment, all in one process. The substrate is made in place and never needs to be handled, cleaned, or removed from the vacuum during fabrication, thus minimizing exposure to dust or other contaminants that could degrade the cell’s performance.

“The innovative step is the realization that you can grow the substrate at the same time as you grow the device,” Bulović says.

In this initial proof-of-concept experiment, the team used a common flexible polymer called parylene as both the substrate and the overcoating, and an organic material called DBP as the primary light-absorbing layer. Parylene is a commercially available plastic coating used widely to protect implanted biomedical devices and printed circuit boards from environmental damage. The entire process takes place in a vacuum chamber at room temperature and without the use of any solvents, unlike conventional solar-cell manufacturing, which requires high temperatures and harsh chemicals. In this case, both the substrate and the solar cell are “grown” using established vapor deposition techniques.

One process, many materials

The team emphasizes that these particular choices of materials were just examples, and that it is the in-line substrate manufacturing process that is the key innovation. Different materials could be used for the substrate and encapsulation layers, and different types of thin-film solar cell materials, including quantum dots or perovskites, could be substituted for the organic layers used in initial tests.

But already, the team has achieved the thinnest and lightest complete solar cells ever made, they say. To demonstrate just how thin and lightweight the cells are, the researchers draped a working cell on top of a soap bubble, without popping the bubble. The researchers acknowledge that this cell may be too thin to be practical — “If you breathe too hard, you might blow it away,” says Jean — but parylene films of thicknesses of up to 80 microns can be deposited easily using commercial equipment, without losing the other benefits of in-line substrate formation.

A flexible parylene film, similar to kitchen cling-wrap but only one-tenth as thick, is first deposited on a sturdier carrier material – in this case, glass. Figuring out how to cleanly separate the thin material from the glass was a key challenge, explains Wang, who has spent many years working with parylene.

The researchers lift the entire parylene/solar cell/parylene stack off the carrier after the  fabrication process is complete, using a frame made of flexible film. The final ultra-thin, flexible solar cells, including substrate and overcoating, are just one-fiftieth of the thickness of a human hair and one-thousandth of the thickness of equivalent cells on glass substrates — about two micrometers thick — yet they convert sunlight into electricity just as efficiently as their glass-based counterparts.

No miracles needed

“We put our carrier in a vacuum system, then we deposit everything else on top of it, and then peel the whole thing off,” explains Wang. Bulović says that like most new inventions, it all sounds very simple — once it’s been done. But actually developing the techniques to make the process work required years of effort.

While they used a glass carrier for their solar cells, Jean says “it could be something else. You could use almost any material,” since the processing takes place under such benign conditions. The substrate and solar cell could be deposited directly on fabric or paper, for example.

While the solar cell in this demonstration device is not especially efficient, because of its low weight, its power-to-weight ratio is among the highest ever achieved. That’s important for applications where weight is important, such as on spacecraft or on high-altitude helium balloons used for research. Whereas a typical silicon-based solar module, whose weight is dominated by a glass cover, may produce about 15 watts of power per kilogram of weight, the new cells have already demonstrated an output of 6 watts per gram — about 400 times higher.

“It could be so light that you don’t even know it’s there, on your shirt or on your notebook,” Bulović says. “These cells could simply be an add-on to existing structures.”

Still, this is early, laboratory-scale work, and developing it into a manufacturable product will take time, the team says. Yet while commercial success in the short term may be uncertain, this work could open up new applications for solar power in the long term. “We have a proof-of-concept that works,” Bulović says. The next question is, “How many miracles does it take to make it scalable? We think it’s a lot of hard work ahead, but likely no miracles needed.”

“This demonstration by the MIT team is almost an order of magnitude thinner and lighter” than the previous record holder, says Max Shtein, an associate professor of materials science and engineering, chemical engineering, and applied physics, at the University of Michigan, who was not involved in this work. As a result, he says, it “has tremendous implications for maximizing power-to-weight (important for aerospace applications, for example), and for the ability to simply laminate photovoltaic cells onto existing structures.”

“This is very high quality work,” Shtein adds, with a “creative concept, careful experimental set-up, very well written paper, and lots of good contextual information.” And, he says, “The overall recipe is simple enough that I could see scale-up as possible.”

The work was supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center, and by the National Science Foundation.

(Source: MIT Energy Initiative)

Webinar: Design and manufacturing of advanced composite spacecraft

When: March 16, 2016, 2:00PM

Presenter: John O’Connor, director, product and market strategy, aerospace and defense, Siemens PLM.

Sponsor: Siemens PLM

Source: CompositesWorld

Significant disruptions are occurring in the space market that include important advances in the use of composite material technologies. Industry experts recognize that the use of carbon fiber, and other composite materials, is growing significantly in spacecraft, satellite, launch vehicle and virtually all other spaceflight-related applications. This trend is being driven by a requirement to decrease weight, increase payload and reduce fuel requirements. This webinar will discuss how the use of composite materials creates unique challenges for both engineering and manufacturing, and provide an overview of the specialized technology that is necessary to address these challenges. Learn how Siemens PLM Software is being used to help companies meet the growing need for composite design and manufacturing solutions in spaceflight applications.

Primary topics include:

  • Industry trends related to design and manufacturing of spacecraft, satellites and launch vehicles
  • Understanding best practices of composite design and engineering in spaceflight applications
  • How technology can support the optimization of designs for performance and manufacturability

Click here to register.

Offshore-wind-energy

Long-lasting coatings for offshore renewable energy

EU researchers have developed an innovative and environmentally friendly new aluminium-based coating to provide protection for offshore energy installations.

The Advanced Coatings for Offshore Renewable Energy (ACORN) project has developed a new protective coating that will extend the lifetime of marine structures to 20 or more years and avoid the need for supplementary cathodic protection.

The result will be an entirely new, non-paint solution for the protection of offshore renewable energy steel structures including docks, buoys, and oil and gas rigs. Once successful, the coating will boost the competitiveness of the industry and help trigger a widespread roll-out of the different offshore technologies.

Corrosion, fouling and cavitation represent a huge challenge for the industry, especially since offshore structures cannot be dry-docked to fix these problems.

Use of a pure aluminium coating

The project involved the creation of a highly differentiated and patentable technical solution that could even be extended in the longer term. It uses thermally sprayed aluminium (TSA) – a substance with proven long-term corrosion resistance – to provide a matrix coating with a lifespan of 20 + years.

This porous mix is then dotted with environmentally-friendly active antifouling substances in very tiny concentrations (< 1 %) which will be gradually exposed at the active surface of the coating as the TSA corrodes away at a rate of 10µm per year.

Project scientists chose a 99.5 % pure aluminium coating applied with the twin arc spraying method. The eco-friendly anti-fouling substances were then chosen for their performance, commercial availability and regulatory approval for use in EU waters.

Scientists also evaluated the inert antifoul carriers for stability in seawater, hydrophobicity and for low processing temperatures to protect the anti-fouling agents. Barnacle resistance tests were then undertaken in marine trials off the coast of Sweden.

Coatings for tidal power to boost lifespan

ACORN is also developing a corrosion and cavitation-resistant coating with a 10 + year design life for tidal energy generators which operate in high-velocity environments.

Three coatings were selected: a tungsten carbide containing alloy, an aluminium oxide and an iron-based alloy. They were chosen for their behaviour under cavitation conditions, compatibility with the substrate material, corrosion performance, a lack of heavy metal content, environmental safety and finally, cost and manufacturing considerations. The three substances were coated onto initial test coupons and assessed for resistance to both cavitation and seawater corrosion.

Computer simulations supported the studies on hydrofoils and model turbine blades in a cavitation tunnel to fully assess each coating’s performance under expected service conditions.

Now that the project is working on the commercialisation of the new coating, it is hoped that this will make a major contribution to providing environmentally safe solutions as global energy demands and a shift towards renewable energies will likely see the construction of more offshore energy installations over the next decades.

(Source: www.phys.org)

World Organic LED (OLED) Market is Expected to Reach $ 37.2 Billion, by 2020

According to a new report published by Allied Market Research titled, “World Organic LED Market – Opportunities and Forecasts, 2014 – 2020,” the world Organic LED market is estimated to generate revenue of $37.2 billion by 2020, registering a CAGR of 18.3% during the forecast period 2015 -2020. Enhanced picture quality, high energy efficiency, increasing demand for eco-friendly products and growing government regulations would supplement the growth of Organic LED market.

Display is one of the major application areas of OLED technology and accounted for approximately 96.9% market share of the total OLED market in terms of revenue in 2014. OLED films are quite durable and capable of operating at higher temperature as compared to LED. OLED offers light emitting surfaces, which are lightweight and thin. OLED displays do not require shutter arrays and backlight, thus enabling the manufacturers to easily replace the heavy and breakable glass used in LED displays with a stronger and lighter plastic substrate. High cost is one of the major restraints for the OLED market. However, it is expected that with the technological advancements and increasing focus of organizations on research activities, price of OLED panels would considerably reduce in future.

AMOLED and PMOLED are the two major OLED display technologies available in the market. Though PMOLEDs are cost effective and easy to build, they are restricted in size and resolution, which limits their adoption. On the other hand, AMOLED are expensive and material intensive, but they do not have any restriction on resolution or size. It is estimated that AMOLED technology would lead the world OLED market during the forecast period to reach $32.0 billion by 2020.

The second application area of OLED is lighting, which is expected to witness a considerable growth over the forecast period.  Based on end users, the report segments the World OLED lighting market into commercial, residential and industrial sector. Among all, commercial segment was the highest revenue generating end user segment, accounting for $245.4 million in 2014. However, Industrial OLED lighting end-user application segment would witness highest CAGR of 53.8% during the forecast period to reach $463.6 million by 2020.

Key findings of the study

World Organic LED market is expected to grow rapidly owing to increased adoption of OLED technology into smartphones, television and lighting applications

Lighting application of OLED technology would grow at a CAGR of 45.8% during the forecast period 2015-2020, owing to rapid technological advancement

AMOLED would generate the highest revenue throughout the forecast period, growing at a CAGR of 16.4% during the forecast period 2015 – 2020

The Asia-Pacific market would foresee tremendous growth for OLED technology. The region would account for nearly 35.9% of the total market by 2020, growing at a CAGR of 16.8% during the forecast period

The report also provides insight into the competitive scenario of the world Organic LED market and a comprehensive study of the key strategies adopted by key market players operating in the world OLED market. Prominent players operating in the OLED market have adopted product launch as their key growth strategy. Some of the major companies profiled in the report include LG Electronics Inc., Koninklijke Philips N.V., OSRAM GmbH, Samsung Electronics Co., Ltd., Novaled GmbH and Universal Display Corporation among others.

World Light Emitting Diodes (LED) Market

World Industrial and Commercial LED Lighting Market

World Automotive Lighting Market

(Source: Allied Market Research, PRNewswire)